Home ›› 17 Feb 2022 ›› Opinion

The economic transformation: What would change in the net-zero transition

Mekala Krishnan and Hamid Samandari
17 Feb 2022 00:00:00 | Update: 17 Feb 2022 02:14:52
The economic transformation: What would change in the net-zero transition

Global decarbonization will be possible only if nine system-level requirements are met, encompassing physical building blocks, economic and societal adjustments, and governance, institutions, and commitment. Here, we illustrate the economic and societal adjustments by examining the economic transformation that would enable a successful transition to net-zero emissions by 2050. We look at the shifts in the economy in aggregate, on energy and land-use systems and the sectors that they encompass, and on individuals, both consumers and workers. Our focus is on the nature and magnitude of the transition in four areas: demand, capital allocation, costs, and jobs.

Our analysis uses the Net Zero 2050 scenario from the Network for Greening the Financial System (NGFS). This is a hypothetical simulation, not a projection or a prediction. Our perspectives on demand, investment, costs, and jobs below represent a consistent and interdependent view of the world under this scenario. The analysis is not exhaustive, and we acknowledge its limitations and uncertainties.

Even under the relatively orderly scenario considered here, the economic transformation will be universal, substantial, and often front-loaded, with sectors, geographies and communities, and individuals facing uneven exposure. Among the challenges is the risk of short-term disorderly transitions in energy markets, and in the economy more broadly, if the ramp-down of high-emissions activities is not carefully managed in parallel with the ramp-up of low-emissions ones. A disorderly transition could come with high economic costs as well as a backlash that delays the transition. For all its short-term risks, the transition will also create rich new opportunities across sectors and geographies, for example in the form of new markets for low-emissions products and support services.

More broadly, in considering the economic and societal adjustments necessary for achieving net-zero emissions, it is important not to lose sight of the bigger context: the longer-term risks from increased warming and the further build-up of physical climate risks.

Our analysis suggests that under the NGFS Net Zero 2050 scenario, changes in policies, technologies, and consumer and investor preferences would lead to considerable shifts in demand for various goods and services. By 2050, oil and gas production volumes would be 55 percent and 70 percent lower, respectively, than they are today. Coal production for energy use would nearly end by 2050.

Similarly, the transition would affect demand for products that use fossil fuels. Demand for internal combustion engine (ICE) cars would eventually cease as sales of battery-electric and fuel cell-electric cars increase from 5 percent of new-car sales in 2020 to virtually 100 percent by 2050.

In other sectors, demand could shift, with a substitution of products manufactured with emissions-intensive operations to lower-emissions alternatives. For example, steel production would increase by about 10 percent relative to today, but with low-emissions steel rising from one-quarter of all production to almost all production by 2050. In the agriculture and food system, the dietary shifts necessary for a net-zero transition would, over time and in the case of some consumers, move protein demand from emissions-intensive beef and lamb to lower-emissions foods like poultry.

In other areas, in particular those related to low-emissions energy sources, demand would grow. Power demand in 2050 would be more than double what it is today. Production of hydrogen and biofuels would both increase more than tenfold between 2021 and 2050. Other industries, for example those that manage carbon with carbon capture and storage technologies, could also grow.

Shifts in demand during the net-zero transition would trigger the retirement or transformation of some existing physical assets and the acquisition of new ones. Our analysis suggests that these moves would influence spending on physical assets in two ways. First, spending would increase significantly relative to today. Second, a portion of the capital that is now being spent on high-emissions assets would be spent on low-emissions assets, including those with CCS installed.

Our analysis of the NGFS Net Zero 2050 scenario suggests that about $275 trillion in cumulative spending on physical assets, or approximately $9.2 trillion per year, would be needed between 2021 and 2050 across the sectors that we studied. This represents spending related specifically to the deployment of new physical assets and to the decarbonization of existing assets. It does not include spending to support adjustments—for example, to reskill and redeploy workers, compensate for stranded assets, or account for the loss of value pools in specific parts of the economy. Spending could also be higher than sized here in order to build redundancy into energy systems during the transition to avoid supply volatility. Other research to date has largely focused on estimating required energy investment. Here we expand this to include additional spending categories such as assets that use energy (for example, the full cost of passenger cars and heat pumps), capital expenditures in agriculture and forestry, and some continued spend in high-emissions physical assets like fossil fuel–based vehicles and power assets. As a result, our estimates exceed to a meaningful degree the $3 trillion to $4.5 trillion of annual spending for the net-zero transition that others have estimated.

The amount is equivalent to about 7.5 percent of GDP from 2021 to 2050. The required spending would be front-loaded, rising from about 6.8 percent of GDP today to about 9 percent of GDP between 2026 and 2030 before falling. In dollar terms, the increase in annual spending is about $3.5 trillion per year, or 60 percent, more than is being spent today, all of which would be spent in the future on low-emissions assets. This incremental spending would be worth about 2.8 percent of global GDP between 2020 and 2050. The increase is approximately equivalent, in 2020, to half of global corporate profits, one-quarter of total tax revenue, 15 percent of gross fixed capital formation, and 7 percent of household spending.

The second aspect, the reallocation of spending, would also be significant. At present, $3.7 trillion—or 65 percent of total spending—goes annually toward high-emissions assets, such as coal-fired power plants and vehicles with internal combustion engines. In this net-zero scenario, about $1 trillion of today’s spend on high-emissions assets would need to be reallocated to low-emissions assets. Of the overall $9.2 trillion needed annually for a net-zero transition over the next 30 years, $6.5 trillion—or 70 percent of total spending—would be on low-emissions assets, reversing today’s trend.

mckinsey.com

×