Home ›› 25 Oct 2022 ›› Opinion

Pancreatic cancer dissolved in mice


25 Oct 2022 00:00:00 | Update: 25 Oct 2022 00:53:22
Pancreatic cancer dissolved in mice

Biomedical engineers have demonstrated the most effective treatment for pancreatic cancer in mouse models ever recorded. While most mouse trials consider simply halting growth a success, the new treatment completely eliminated tumors in 80% of mice across several model types, including those considered the most difficult to treat. The approach combines traditional chemotherapy drugs with a new method for irradiating the tumor.

Biomedical engineers at Duke University have demonstrated the most effective treatment for pancreatic cancer ever recorded in mouse models. While most mouse trials consider simply halting growth a success, the new treatment completely eliminated tumors in 80% of mice across several model types, including those considered the most difficult to treat.

The approach combines traditional chemotherapy drugs with a new method for irradiating the tumor. Rather than delivering radiation from an external beam that travels through healthy tissue, the treatment implants radioactive iodine-131 directly into the tumor within a gel-like depot that protects healthy tissue and is absorbed by the body after the radiation fades away.

The results appear online October 19 in the journal Nature Biomedical Engineering.

"We did a deep dive through over 1100 treatments across preclinical models and never found results where the tumors shrank away and disappeared like ours did," said Jeff Schaal, who conducted the research during his PhD in the laboratory of Ashutosh Chilkoti, the Alan L. Kaganov Distinguished Professor of Biomedical Engineering at Duke. "When the rest of the literature is saying that what we're seeing doesn't happen, that's when we knew we had something extremely interesting."

Despite accounting for only 3.2% of all cancer cases, pancreatic cancer is the third leading cause of cancer-related death. It is a very difficult to treat because its tumors tend to develop aggressive genetic mutations that make it resistant to many drugs, and it is typically diagnosed very late, when it has already spread to other sites in the body.

The current leading treatment combines chemotherapy, which keeps cells in a stage of reproduction vulnerable to radiation for longer periods of time, with a beam of radiation targeted at the tumor. This approach, however, is ineffective unless a certain threshold of radiation reaches the tumor. And despite recent advances in shaping and targeting radiation beams, that threshold is very difficult to reach without risking severe side effects.

Another method researchers have tried involves implanting a radioactive sample encased in titanium directly within the tumor. But because titanium blocks all radiation other than gamma rays, which travel far outside the tumor, it can only remain within the body for a short period of time before damage to surrounding tissue begins to defeat the purpose.

"There's just no good way to treat pancreatic cancer right now," said Schaal, who is now director of research at Cereius, Inc., a Durham, North Carolina biotechnology startup working to commercialize a targeted radionuclide therapy through a different technology scheme.

 

Science Daily

×