Home ›› 12 Nov 2022 ›› Opinion

Tides: Cause and effect

12 Nov 2022 00:02:30 | Update: 12 Nov 2022 00:02:30
Tides: Cause and effect

The regular rise and fall of the ocean’s waters are known as tides. Along coasts, the water slowly rises up over the shore and then slowly falls back again. When the water has risen to its highest level, covering much of the shore, it is at high tide. When the water falls to its lowest level, it is at low tide. Some lakes and rivers can also have tides.

Forces that contribute to tides are called tidal constituents. The Earth’s rotation is a tidal constituent. The major tidal constituent is the moon’s gravitational pull on the Earth. The closer objects are, the greater the gravitational force is between them. Although the sun and moon both exert gravitational force on the Earth, the moon’s pull is stronger because the moon is much closer to the Earth than the sun is.

The moon’s ability to raise tides on the Earth is an example of a tidal force. The moon exerts a tidal force on the whole planet. This has little effect on Earth’s land surfaces, because they are less flexible. Land surfaces do move, however, up to 55 centimeters (22 inches) a day. These movements are called terrestrial tides. Terrestrial tides can change an object’s precise location. Terrestrial tides are important for radio astronomy and calculating coordinates on a global positioning system (GPS). Volcanologists study terrestrial tides because this movement in the Earth’s crust can sometimes trigger a volcanic eruption.

The moon’s tidal force has a much greater effect on the surface of the ocean, of course. Water is liquid and can respond to gravity more dramatically.

The tidal force exerted by the moon is strongest on the side of the Earth facing the moon. It is weakest on the side of the Earth facing the opposite direction. These differences in gravitational force allow the ocean to bulge outward in two places at the same time. One bulge occurs on the side of the Earth facing the moon. This is the moon’s direct tidal force pulling the ocean toward it. The other bulge occurs on the opposite side of the Earth. Here, the ocean bulges in the opposite direction of the moon, not toward it. The bulge may be understood as the moon’s tidal force pulling the planet (not the ocean) toward it.

These bulges in the ocean waters are known as high tides. The high tide on the side of the Earth facing the moon is called the high high tide. The high tide caused by the bulge on the opposite side of the Earth is called the low high tide. In the open ocean, the water bulges out toward the moon. Along the seashore, the water rises and spreads onto the land.

One high tide always faces the moon, while the other faces away from it. Between these high tides are areas of lower water levels—low tides. The flow of water from high tide to low tide is called an ebb tide.

One high tide always faces the moon, while the other faces away from it. Between these high tides are areas of lower water levels—low tides. The flow of water from high tide to low tide is called an ebb tide.

Most tides are semidiurnal, which means they take place twice a day. For example, when an area covered by the ocean faces the moon, the moon’s gravitational force on the water causes a high high tide. As the Earth rotates, that area moves away from the moon’s influence and the tide ebbs.

NGS

×